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This paper extends the numerical results of Hunter & Vanden-Broeck (1983) and
Vanden-Broeck (1991) which were concerned with studies of solitary waves on the
surface of fluids of finite depth under the action of gravity and surface tension. The
aim of this paper is to answer the question of whether small-amplitude elevation
solitary waves exist. Several analytical results have proved that bifurcating from
Froude number F = 1, for Bond number τ between 0 and 1/3, there are families
of ‘generalized’ solitary waves with periodic tails whose minimum amplitude is an
exponentially small function of F−1. An open problem (which, for τ sufficiently close
to 1/3, was recently proved by Sun 1999 to be false) is whether this amplitude can
ever be zero, which would give a truly localized solitary wave.

The problem is first addressed in terms of model equations taking the form of
generalized fifth-order KdV equations, where it is demonstrated that if such a zero-
tail-amplitude solution occurs, it does so along codimension-one lines in the parameter
plane. Moreover, along solution paths of generalized solitary waves a topological
distinction is found between cases where the tail does vanish and those where it does
not. This motivates a new set of numerical results for the full problem, formulated
using a boundary integral method, namely to probe the size of the tail amplitude as
τ varies for fixed F > 1. The strong conclusion from the numerical results is that true
solitary waves of elevation do not exist for the steady gravity–capillary water wave
problem, at least for 9/50 < τ < 1/3. This finding confirms and explains previous
asymptotic results by Yang & Akylas.

1. Introduction
The description of wave propagation under the combined effects of gravity and

surface tension on the surface of a liquid above a horizontal bottom is a classical
problem in applied mathematics with a long history (Korteweg & de Vries 1895;
Wilton 1915). In the last twenty years or so there have been a number of advances
in the understanding of this problem, using a variety of numerical, asymptotic and
rigorous analytical methods (see the review by Dias & Kharif 1999). We focus
exclusively on two-dimensional steady waves. For solitary waves, the problem can be
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characterized by the Froude number F and the Bond number τ defined by

τ = T/ρgH2, F = c/
√
gH, (1.1)

Here, g is the acceleration due to gravity, T is the coefficient of surface tension, ρ is
the density of the fluid, H is its depth and c is the propagation speed of the wave.

When τ > 1/3, given values of F < 1 in an appropriate range, it is known that
there are isolated solitary waves of depression (with a negative central crest) both via
existence theory (Amick & Kirchgassner 1989; Iooss & Kirchgassner 1992; Buffoni,
Groves & Toland 1996) and numerical computation (Hunter & Vanden-Broeck 1983;
Dias, Menasce & Vanden-Broeck 1996). We mention that for certain F-values these
predominantly depression waves develop decaying oscillatory tails, and that near the
minimum of the dispersion curve for gravity–capillary waves these become envelope
waves, some of which have positive central crests. In what follows we shall draw
a distinction between these envelope waves and genuine waves of elevation which
have a large positive crest without being surrounded by other peaks and troughs of
comparable amplitude. Indeed for τ < 1/3, and fixed values of F > 1, it is known that
there are steady solutions which form one-parameter families of such elevation waves.
They are not, however, true solitary waves, but are instead characterized by a train of
ripples of constant amplitude in the far field (Beale 1991; Sun 1991). These are called
generalized solitary waves, to distinguish them from true solitary waves which are
characterized by an asymptotically flat free surface at large distance from the core.

The ripples in the tail of the generalized solitary waves are of questionable physical
validity because they occur on both sides and therefore do not satisfy radiation
conditions without the supply of energy from infinity. Therefore an important question
is whether the free parameter can be chosen so that the amplitude of the ripples
vanishes. One of the key known features of these ripples is that the amplitude is
an exponentially small function of F − 1, as has been shown both by exponential
asymptotics (Sun & Shen 1993) and by rigorous application of centre manifold and
normal form theory (Lombardi 2000). Lombardi’s analysis (see also the discussion in
§ 3 below) also suggests that for fixed τ < 1/3, it is non-generic that zero-tail-amplitude
solutions bifurcate from F = 1. What is not known is whether there are isolated τ
values less than 1/3 at which such true solitary waves bifurcate. This question has
been rigorously answered in the negative for τ sufficiently close to 1/3 by Sun (1999).
The aim of this paper is to numerically probe the question of whether true solitary
waves bifurcate for general τ < 1/3. A key previous result in this direction is that
of Yang & Akylas (1996) who use complex-time asymptotics to estimate the ‘beyond
all orders’ amplitude of the periodic tail as F → 1. They conclude for seven discrete
values of τ that this tail amplitude is not zero, and the general trend is that the
constant multiplying the exponentially small term varies monotonically with τ. The
validity of the asymptotics is also backed up in that work by numerical results using
a spectral method valid for small tail amplitude, but only for the fixed value τ = 0.3.
Related numerical and asymptotic results are also known for interfacial and internal
solitary waves (Akylas & Grimshaw 1992; Michallet & Dias 1999).

The numerical method we use is not restricted to generalized solitary waves with
small amplitude. Hence we are able to probe the topological structure of solution
branches of generalized solitary waves, which will lead us to an important observation
about the structure of models which possess true elevation waves, compared with
those which do not. Specifically, we approximate solitary waves by periodic waves of
sufficiently long period and solve the full nonlinear equations for water waves by a
boundary integral method. Hunter & Vanden-Broeck (1983) were the first to compute
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generalized solitary waves in this way. Later, in Vanden-Broeck (1991), it was shown
for a fixed τ-value, that the amplitude of the ripples computed can be minimized so
that they are invisible on the scale of the waves. Here we present extended calculations
to explore whether or not this minimum amplitude is really zero. In order to do this
we appeal to intuition gained from first studying an extended fifth-order Korteweg–de
Vries model (5thKdV) equation.

The results are presented as follows. In § 2 we recall briefly a formulation of the
classical water wave problem we study and how it has been approximated by various
KdV-type model equations. Section 3 then presents a series of numerical experiments
on two different forms of the extended 5thKdV equation. The parameter dependence
of generalized solitary waves is uncovered both in a case when the tails do vanish
and when they do not. Section 4 then introduces the numerical method to be used for
the full problem and, taking insight from the results in § 3, presents a set of numerical
experiments specifically designed to probe the minimum size of the tail amplitude of
the generalized solitary waves. Finally, § 5 draws conclusions.

2. Formulation
We consider a train of periodic waves of wavelength L travelling at a constant

velocity C at the surface of a two-dimensional fluid of finite depth H . The fluid
is assumed to be inviscid and incompressible, and the flow to be irrotational. In
particular we define a velocity potential φ and stream function ψ and choose φ = 0
at a crest and ψ = 0 on the free surface. Gravity g and surface tension T are both
taken into account. The velocity C is defined as the average horizontal fluid velocity at
any horizontal level completely within the fluid. The depth H is defined by H = Q/C
where Q is the value of |ψ| on the bottom. Solitary waves are defined by taking the
limit L/H →∞. Numerically they will be approximated by periodic waves with large
L/H (typically ∼ 100). We henceforth non-dimensionalize by setting H = C = 1 and
introducing the dimensionless Froude number F and Bond number τ defined in (1.1).
We use a coordinate system with x horizontal and y measured vertically upwards
from the horizontal bottom.

This problem can be formulated in terms of potential flow with nonlinear dynamic
and kinematic boundary conditions on the free surface (e.g. Stoker 1957). It can
also be reformulated as a system of integro–differential equations for the x and y
coordinates of a material point on the fluid surface as a function of the complex
potential function f = φ + iψ where ψ = 0 defines the free surface. We restrict our
attention to waves which are symmetric with respect to φ = 0. Using a Cauchy integral
formula we obtain (Vanden-Broeck & Schwartz 1979; Hunter & Vanden-Broeck 1983;
Vanden-Broeck 1991)

x′(φ)−1=− 1

L

∫ L/2

0

y′(s)
(

cot
π(s− φ)

L
+ cot

π(s+ φ)

L

)
ds

+
2r0
L

∫ L/2

0

[x′(s)− 1]{r2
0 − cos[(2π/L)(s− φ)]− y′(s) sin[(2π/L)(s− φ)]

1 + r4
0 − 2r2

0 cos[(2π/L)(s− φ)]
ds

+
2r0
L

∫ L/2

0

[x′(s)− 1]{r2
0 − cos[(2π/L)(s+ φ)]− y′(s) sin[(2π/L)(s+ φ)]

1 + r4
0 − 2r2

0 cos[(2π/L)(s+ φ)]
ds,

(2.1)
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F2

2

(
1

x′(φ)2 + y′(φ)2
− 1

)
+ y + τ

x′(φ)y′′(φ)− x′′(φ)y′(φ)

[x′(φ)2 + y′(φ)2]3/2
= 0, (2.2)

where F is the Froude number and

r0 = e−2π/L.

This latter formulation will be adopted below since it is more convenient for numerics
as mesh points are only required to be stationed on the free surface rather than
throughout the fluid domain.

In the limit F → 1, the waves are of small amplitude. Therefore solutions may be
described by weakly nonlinear theories. To derive them, we move to a steady frame
and denote the equation for the free surface as y = H + Aη. Here A is a parameter
measuring the amplitude of the wave. For small A, η(x) satisfies the KdV equation

2(F − 1)η′ − 3ηη′ + (τ− 1
3
)η′′′ = 0 (2.3)

(see Korteweg & de Vries 1895 for a derivation). This equation has periodic travelling
solutions (cnoidal waves) which tend in the limit of long wavelength to the famous
solitary wave solution described by the function sech2. This describes a depression
wave for τ > 1/3, F < 1 and an elevation wave for τ < 1/3, F > 1.

When τ = 1/3, the dispersive term in (2.3) vanishes and hence there are no periodic
or solitary wave solutions. As τ → 1/3, the appropriate long-wave equation is the
fifth-order KdV equation (5thKdV) also known as the Kawahara equation

2(F − 1)η′ − 3ηη′ + (τ− 1
3
)η′′′ − 1

45
η(5) = 0, (2.4)

which may be derived by a regular asymptotic expansion near τ = 1/3, F = 1 (Hunter
& Vanden-Broeck 1983, § 2). There are other derivations of this equation, with different
coefficients, in several other physical contexts (e.g. Kakutani & Ono 1969; Hasimoto
1970; Kawahara 1972; Zufiria 1987; Hunter & Scheurle 1988; Karpman 1994). The
properties of its solutions are discussed in § 3 which follows. Also, equations have been
derived with extra nonlinear terms, see Kichenassamy & Olver (1996) and references
therein. It is precisely such a model that we study in the § 3. The values of the
parameters we take there are not necessarily ones in which the 5thKdV is a good
approximation of the full water-wave problem. Instead, we merely treat the model as
a guide of what to expect qualitatively when studying the full model numerically.

3. Solitary waves of fifth-order KdV equations
In Champneys & Groves (1997) the following extended 5KdV model for the free

surface u(x) of the capillary–gravity water-wave problem was considered:

ut + 2
15
uxxxx − buxxx + 3uux + µ[uxuxx + uuxxx] = 0 (3.1)

It reduces to the fourth-order ODE

2
15
u′′′′ − bu′′ + au+ 3

2
u2 + µ[(uu′)′ − 3

2
(u′)2] = 0 (3.2)

upon moving to a steady frame moving at speed a and integrating once, choosing the
integration constant to be zero in order to describe solitary waves. This model may
be derived using Hamiltonian perturbation theory from the full water-wave problem
(Craig & Groves 1994), and is a special case of the more general form studied by
Kichenassamy & Olver (1996). The parameters a and b are related to the Froude and
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Bond numbers via
a

2
=

1

F
− 1, b =

τ− 1/3

F2
.

Hence as τ→ 1/3 and F → 1 the parameters a and b play the roles of the difference
of Froude and Bond numbers respectively from the critical codimension-two point.
Specifically we have the scalings

a ∼ −2(F − 1), b ∼ τ− 1
3

for F ∼ 1, τ ∼ 1
3
.

Finally, µ is an artificial parameter that represents the relative importance of various
nonlinear terms in the long-wave expansion. Only its sign is important, since non-zero
µ can be rescaled to unity; here we study only µ = 0 or 1. The case µ = 0 gives (a
scaling of) the usual 5thKdV equation (2.4). An overview of parameter space may be
found in Champneys & Groves (1997). Two parameter regions are of interest: a > 0
and a < 0, and we discuss these below for both µ = 0 and µ = 1.

Essentially, with a > 0 solitary wave solutions are all waves of depression, which
tend to envelope solitary waves in the limit of small amplitude as b is decreased to
−√8a/15. In fact there are also infinitely many multi-troughed ‘bound state’ versions

of these solutions for −√8a/15 < b <
√

8a/15 some of which are stable as a solution
of the evolutionary problem (see Buffoni, Champneys & Toland 1996; Buffoni & Séré
1996; Yang & Akylas 1997; Buryak & Champneys 1997; Dias & Kuznetsov 1999;
Calvo, Yang & Akylas 2000; Bridges & Derks 1999) for recent rigorous, asymptotic
and numerical results. In another limit, a → 0+ for b > 0, a unique solitary wave
solution bifurcates at zero amplitude, in so doing tending to the soliton solution of the
usual third-order KdV equation, which can be recovered in this limit after rescaling.
Many of these results for a > 0 extend to the case µ > 0 and can also be shown to
have rigorous implications via spatial centre-manifold reduction, for the existence of
qualitatively similar solutions for the full water-wave problem.

The existence of solitary wave solutions for a < 0 is much more subtle and forms
the subject of this paper. Essentially, the limit a → 0− for b < 0 also captures the
usual third-order KdV equation after rescaling (as did the limit a→ 0+, b > 0). The
perturbation that the 5thKdV adds to the soliton solution of the KdV equation (which
is a wave of elevation in this case) is a rapid oscillatory term. This then is a beyond-
all-orders asymptotics problem and has been studied by many authors (e.g. Pomeau,
Ramani & Grammaticos 1988; Amick & Toland 1992; Grimshaw & Joshi 1995; Sun
1998). Recent rigorous theory by Lombardi (2000) for a class of systems including
(3.2) is the most comprehensive. He shows that generically in the limit of a→ 0 there
do not exist true solitary waves of elevation, but there are one-parameter families of
generalized solitary waves, which represent homoclinic connections between periodic
orbits, the minimum amplitude of which is an exponentially small function of a as
a → 0. For (3.2) with µ = 0, it is known that there are no true solitary waves as
a → 0 (Amick & McLeod 1991), that is the tail amplitude never vanishes. Also, the
family of generalized solitary waves (for fixed a and b) traces a ‘u-shaped’ locus in
a plot of amplitude of tail vs. phase shift between tails (Grimshaw & Joshi 1995).
This locus has a slight asymmetry as was first spotted numerically (Champneys &
Lord 1997) and then confirmed analytically (Sun 1998), see for example one of the
u-shaped curves in figure 1(a).

The case µ = 1 is very different, since there is an explicit true solitary wave solution
that exists along the line

a = 3
5
(2b+ 1)(b− 2), b > − 1

2
, u(x) = 3(b+ 1

2
)sech2

(√
3(2b+ 1)

4
x

)
. (3.3)
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Figure 1. Solution loci of long-periodic approximations to generalized solitary waves of the 5thKdV
model (3.2) with a = −0.675. Here a signed measure of the tail amplitude, namely the curvature
of the right-hand end-point of the wave computed with symmetric boundary conditions on an
interval L = 43.2, is plotted against Bond number b. Panels (a) and (b) contrast the cases µ = 0
and µ = 1 respectively. Solid lines correspond to a local maximum at the central crest of the wave,
and dot-dashed lines to a local minimum. Note that the zero-curvature solutions in (b) correspond
to true elevation solitary waves.

Numerically, Champneys & Groves (1997) found this to be the first among a countable
number of branches that bifurcate at small amplitude from a = 0− for smaller values
of b < 0. (Where these branches cross a = 0, for b > 0 – e.g. at b = 2 for the explicit
solution (3.3) – does not correspond to a bifurcation, because the wave has finite
amplitude there, but corresponds to the wave becoming a codimension-one ‘orbit flip’
bifurcation of generic solitary waves; see Champneys & Groves 1997.) In Champneys
(2000) many other fourth-order model systems are studied, and it is found that there
are many other cases when such ‘persistence’ of true solitary wave solutions from the
singular limit occur. Note that this is not in contradiction with Lombardi’s proof of
generic non-persistence, since the solitary waves occur only along lines in a parameter
plane. In fact a straightforward argument counting dimensions of stable and unstable
manifolds of the fourth-order ODE (3.2) shows that, if solitary waves solutions occur,
then they should be of codimension one in parameter space, provided that their
profiles are even (non-symmetric waves are of codimension two).

The purpose of the new results presented in this section is to see how the persistence
or non-persistence of true solitary waves affects the global structure of the generalized
solitary wave solutions to the 5thKdV equation. Later on, we adapt this insight to
draw conclusions based on our numerical findings for the full water-wave problem.
Some results for fixed a = −0.675 are presented in figures 1–5. Before discussing the
results, let us briefly mention the method by which they were obtained, which, in
order for a closer analogy to be drawn with results for the full water-wave problem,
is rather simpler than that used in our earlier work (Champneys & Lord 1997)
(nevertheless, almost identical results have been obtained using the method used in
that work). The generalized solitary waves are approximated by a periodic orbit of
a fixed long period −L/2 < x < L/2 (L = 43.2 for the results presented), where
periodicity in this time-reversible system is guaranteed by taking boundary conditions
u′(−L/2) = u′′′(−L/2) = u′(L/2) = u′′′(L/2) = 0. For each fixed a and b parameter
value, this then fixes the phase shift between the tails. We then perform numerical
continuation on this periodic boundary-value problem using auto (Doedel et al.
1997) for fixed a, allowing b to vary. This is motivated by the fact that computation
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Figure 2. Details of figure 1; (a) for µ = 0, and (b) for µ = 1. The point numbers refer to the
solutions shown in figures 4 and 5. The inset on (b) shows that the leftmost n-shaped curve is
bounded away from zero curvature.
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Figure 3. Global structure of the solutions on the middle (upper) branch of figure 2(a) for
(µ = 0). These solutions are at b-values −0.894, −0.794 and −0.770 for (a)–(c), which correspond to
respective end-curvature values 2.09, 0.21 and 1.64. Only the right-hand portion of the wave from
its point of symmetry is depicted, and the horizontal scale has been divided by a factor L/2 = 21.6.

into the singular limit a → 0 is undesirable, and by the observation from the model
equations in Champneys (2000) that curves of true solitary wave solutions bifurcate
from a = 0 at a non-zero angle. Now, this one-parameter sweep is therefore just a
slice through a three-parameter surface parametrized by phase shift (effectively L)
and the model parameters a and b. Hence it would seem possible that we might miss
curves in the (a, b)-plane corresponding to true solitary waves. However, if a true
solitary wave is found then by definition the phase shift between the zero solution
at x = −∞ and x = +∞ is not defined, and hence computing with any fixed phase
shift will find (a good numerical approximation to) this homoclinic solution. Indeed,
this is precisely what we found by performing calculations with different L-values.
Finally, we simplify the problem by looking only for symmetric solutions (with the
first two boundary conditions replaced by u′(0) = u′′′(0) = 0) and as a measure of the
amplitude of the tail we take the curvature of the right-hand boundary point u′′(L/2).
Using curvature in this way has the advantage that it is a signed quantity, which is
helpful for qualitative interpretation of the results.

Let us now compare the results presented for µ = 0 and µ = 1. Consider first µ = 0,
figures 1(a), 2(a), 3 and 4. Here the generalized solitary waves lie on a succession
of disconnected, alternating ‘u’- and ‘n-shaped’ curves. At the local minimum or
maximum of each curve is the minimum-tail-amplitude solution. Note that taking
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Figure 4. Structure of the solutions on the three branches shown in figure 2(a) (µ = 0). Only the
right-hand portion of the wave from its point of symmetry is depicted, and the horizontal scale has
been divided by a factor L/2 = 21.6. Note that the central core is at a minimum for solutions at
labels 1, 4 and 7 as indicated by the dashed portion of the curves in figure 2.

this sweep in b is similar to taking a sweep in L for fixed b and a because, since
the period of the tail depends on b, then both b and L effectively control the
phase shift between the two tails. The structure of solutions on each u or n is
qualitatively similar, with the large-curvature limit of all branches representing a
localized modulation of a large-amplitude, pure periodic wave (see figure 3). Note
that the numerical continuation of several branches for τ close to 1/3 (whose graphs
end in ‘mid air’ in figure 1(a)) was halted because the global shape of the branch
became more complicated, and there was evidence that the solution was beginning to
be influenced by the finiteness of L.

The situation for µ = 1 is qualitatively different, see figures 1(b), 2(b) and 5. Here,
in addition to u- and n- there are also ‘s-shaped’ curves where the tail amplitude goes
through zero. Two such zero-tail-amplitude points are detected in figure 1(b) – the
first of these is at precisely the value b = −0.25 given by the formula (3.3); the
neighbourhood of the second one is blown up in figure 2(b) and occurs at a value
of b ≈ −0.7307924. This shows how true solitary wave solutions are embedded into
loci of generalized solitary waves. That is, there is a topological difference between
the cases where true solitary waves occur and those where they do not. Namely,
true solitary waves lie on s-shaped curves. This is significant, since rather than have
to carefully check the size of something that is exponentially small in a, we have
produced a numerical criterion for deciding whether true solitary waves exist which
relies on computing O(1) quantities. The criterion is simply that true solitary waves
exist when there are s-shaped curves.
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Figure 5. Structure of the solutions on three branches shown in figure 2(b) (µ = 1), plotted on the
same horizontal scale as in figure 4. Insets in the middle three panels show the detail of the tail of
the wave at the three points close to zero end curvature. Only point 15 is a true solitary wave.

Note that any attempt to continue the zero-curvature solutions on the s-shaped
curves in figure 1(b) from µ = 1 to µ = 0 resulted in solution curves in the (b, µ)-plane
that move to b = −∞ as µ→ 0. This is again strong evidence that no true elevation
solitary wave solution exists for µ = 0.

4. Numerical results for the exact water wave problem
Our numerical procedure for solving (2.1), (2.2) follows closely the boundary

integral method used by Hunter & Vanden-Broeck (1983) and Vanden-Broeck (1991),
to which the reader is referred for the details. We approximate (generalized) solitary
waves by long, even, periodic waves of wavelength L. This approximation enables us
to overcome difficulties associated with the appropriate choice of boundary conditions
in the far field. As L → ∞, the periodic waves approach generalized solitary waves
(for a numerical study of this limit, see Vanden-Broeck 1997). The solutions are
described in terms of four parameters. A solution is defined by fixing the values of
three of these parameters (the value of the fourth comes as part of the solution).
There are different convenient choices for the four parameters. The first three are
L (or equivalently r0), τ and F . In Vanden-Broeck (1991), the fourth parameter was
defined as the velocity of the crest. This is a measure of the wave amplitude, in the
sense that when this parameter is close to one, the wave is of small amplitude. In
this work we find it more convenient to choose this additional free parameter to be
the curvature at the trough of the wave, as this is a measure of the amplitude of the
ripples in the tail. Moreover, as illustrated for the 5thKdV models in the previous
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Figure 6. Illustrating the global structure of solution branches for a consecutive sequence of three
branches for F = 1.02, L = 98.33 and 0.226 < τ < 0.238, computed with N = 269. Panels A–J
depict for the upper branch the detailed profiles of the free surface, illustrating the transitions that
take place as the u-shaped curve is traversed. Solutions at three points on the left-hand n-shaped
curve are also presented.

section, the curvature is a signed quantity which can be used to extract the topological
information of whether solutions lie on purely u- and n-shaped curves, or whether
they are interspersed with s-shaped ones. Practically, this curvature is measured using
a second-difference formula at the right-hand end-point of the free surface.

The system (2.1), (2.2) is discretized by following the procedure described in Hunter
& Vanden-Broeck (1983) and Vanden-Broeck (1991), with the resulting set of nonlin-
ear algebraic equations solved by Newton’s method. Error tolerances were typically
set at 10−7. The accuracy of solutions was found to be highly dependent on the num-
ber of mesh points N used. Solution loci of tail curvature versus τ were computed
using simple natural parameter continuation in either τ or the curvature.

Figure 6 presents some results for fixed F and L with N = 269. Three successive
branches of solutions are plotted as tail curvature vs. τ. Panels A–J show the free
surface profiles. Note the striking similarity between the structure of solutions found
on the u- and n-shaped curves here and those for the 5thKdV results in figures 1–4.
Each solution locus connects two end-points corresponding to pure-periodic waves
with opposite phases at the central point. In between these large-amplitude extremes
is a portion of the locus where the waves have small tail amplitude.

Figures 7 and 8 motivate the choice of F and L taken in these computations.
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Figure 8. The dependence on the Froude number F for fixed L = 98.33, τ = 0.239462. Only the
small-curvature parts of the branches are depicted. Note that the minimum curvatures on branches
for F < 1.01 are smaller than the numerical accuracy.

Changing L (keeping τ and F fixed) results in a periodic sequence of identical u- and
n-shaped curves which correspond to longer and longer approximations to the same
family of generalized solitary waves. Decreasing the Froude number further towards
the critical value F = 1 (keeping τ and L fixed) again creates sequences of u and
n shapes but they become increasingly square, that is the tail amplitude becomes
negligible for large portions of the solution locus, separated by almost vertical walls
of rapid growth in tail amplitude at almost constant F . For F < 1.01, for the τ-value
chosen, the size of the tail amplitude was found to be commensurate with error
tolerances used in Newton’s method and the vertical walls become hard to detect
numerically. The rest of the computations presented use the fixed values L = 98.33
and F = 1.02.

Figure 9 presents results on the convergence of solutions with variation of the
number of mesh points N. It compares results for three different values of τ. Panels
(a) and (b) illustrate that increasing the number of mesh points from those used for
the results in figure 6 makes little quantitative difference, suggesting that the mesh
has effectively converged. Taking a smaller mesh, even as drastically as halving the
number of mesh points, makes a difference in the third decimal for τ, but (crucially)
only in the fourth or fifth decimal place for the minimum value of the end curvature.
Note also that the agreement becomes better as τ increases (see panels c and d ). So
while taking a mesh of N = 269 is desirable for accurately reproducing solutions at a
given τ-value, it seems that N = 135 is sufficient for unfolding the global topology of
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Figure 9. Illustrating the dependence on the number of mesh points N for L = 98.33 and F = 1.02.
(a) Results for four different N-values plotted for one particular branch for 0.231 < τ < 0.237, a
zoom of the small curvature end of which is depicted in (b). (c, d ) Similar comparisons between
two N-values, for the small-curvature tip of branches for two different values of τ.

the solution set. This latter value is also more practical since the typical time taken
for Newton’s method to converge to one solution point is the order of 500 s (on a
SUN SPARC 10), compared with about 5000 s for N = 269.

Finally then, figure 10 presents the results of a global sweep of τ < 1/3. For the
given Froude number, computation for τ < 0.18 = 9/50 was impractical, since the
size of the minimum tail amplitude became comparable with the error tolerance in
Newton’s method. In the figures, we have only depicted the results of continuation of
the low-curvature end of the depicted branches. Branches ending ‘in mid air’ do not
represent the end-point of the branch but where computation was stopped because
the magnitude of the curvature was becoming much larger than its minimum value
along the branch. Also, the crossing of curves (for example for τ = 0.28 in figure 9a)
does not have a special meaning and the intersection simply describes two different
waves with very different profiles for the same τ. In fact, the ‘kinks’ in the branches
for τ a little larger than 0.28 correspond to the ‘envelope’ of the generalized solitary
wave becoming non-monotonic near the centre of the wave, while the tail amplitude
remains of finite size.

Observe from the results that for the entire range of τ-values we have tested, there
is no s-shaped curve. We simply get a regular sequence of u and n shapes like the
case of the fifth-order KdV equation with µ = 0. This is strong numerical evidence
that there are no codimension-one lines in the (F, τ)-plane, bifurcating from F = 1 for
9/50 < τ < 1/3, at which true elevation solitary waves (with zero tail amplitude) occur.
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Figure 10. (a) A global sweep for 0.18 < τ < 1/3 of the small-curvature end of the succession of u-
and n-shaped curves for F = 1.02 and L = 98.33, computed with N = 135. Note that no s-shaped
curves are found and consequently (as illustrated by the zoom in (b) the minimum tail amplitude is
bounded away from zero.

5. Conclusion
Elevation solitary waves do not exist. This is not a proof, but the evidence would

appear compelling. At first sight, this conclusion would appear to contradict the
results in Vanden-Broeck (1991) which identified generalized solitary waves for which
the amplitude of the ripples appears to be zero within graphical accuracy. A closer
examination shows that there is no contradiction, since a blow-up of the far-field
solution in figure 2(c) of Vanden-Broeck (1991) reveals oscillation on a scale ∼ 10−6.
Note that those results were for fixed τ = 0.24 and, most significantly given the results
presented here, a very small F-value of 1.000358. Note that the asymptotics of Yang
& Akylas (1996) also support the conclusions of the present paper. Most significantly,
we have suggested a new, more reliable numerical test of whether the tail amplitude
is ever zero, namely to vary τ for fixed F and L and to assess the topological structure
of the ensuing branches of solutions of generalized solitary waves. We have found
that the answer is then negative, at least for the τ-values for which the minimum tail
amplitude is bigger than numerical precision at the fixed Froude number we chose.

It should be noted that for air–water (for which T ≈ 73 and g ≈ 9.81 in units of cm,
g and s) τ = 0.24 corresponds to H ≈ 6 mm. For such depths, viscosity is not irrelevant
(Benjamin 1982) and a factor of 10−6 in an inviscid model appears insignificant. For
smaller values of τ (larger H) the effect of viscosity is less significant, but as we
have shown, the minimum tail amplitude decreases for fixed F . Hence, realistically,
whether the tail amplitude actually vanishes in the inviscid model does not seem to
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be physically relevant to everyday flows. Nevertheless, this question has proved to be
a historically important one in the theory of gravity–capillary water waves, and we
believe our results (based on the topological structure) represent the first categorical
piece of numerical evidence that true solitary waves of elevation do not exist for a
large range of τ-values.
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